

Vaccines

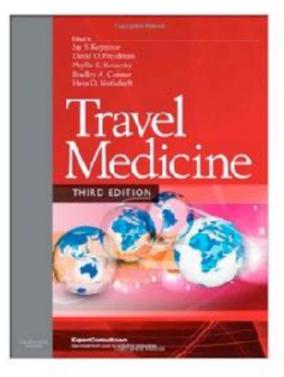
GMHC

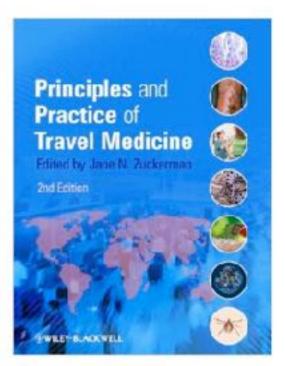
fischer.phil@mayo.edu

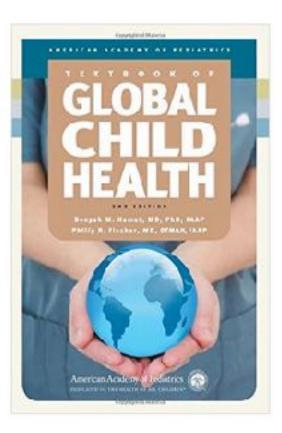
مدينة الشيخ شخبوط الطبية Sheikh Shakhbout Medical City

> in partnerskip with gaadshalt MAYO CLINIC

Vaccines GMHC


pfischer@ssmc.ae





Mayo Clinic Children's Center

000

@2013MFMER | slide-89

Disclosures

Financial – vaccine-related writing:

free copies and small royalties for textbook writing payment for commentaries, *Infectious Disease Alert*

Personal "biases:"

I've been sick with typhoid (2 weeks) and hepatitis A (10 months) before good vaccines were developed.

I've had dozens of patients die from vaccine-preventable infections.

Another Disclosure

Some "off label" vaccine use will be mentioned.

Approach

Knowledge is power – preparedness by information

Humility breeds caution – accept help from a team

We're in this together – so, interact "freely"

Both "forest" and "trees" – big picture and details

Objectives

By participating in this session, learners will:

1. be able to explain vaccines in the context of an overall approach to infection prevention

2. know how to find good up-to-date information about vaccination

3. understand new data about vaccination for several important illnesses

Vaccines, Germs, and Immunity

Germs

Inside and out, we're covered with germs.

Most don't bother us,

many help us,

some make us sick.

Germs - Suppression

Sanitize the environment (kill germs)

Make the environment germ-unfriendly (such as by decreasing mosquito populations)

Germs – Reducing Transmission

Breathing

Swallowing

Touching

Sharing (intimately)

Germs – Reducing Transmission				
Breathing	masks (help in and out)			
Swallowing	sanitize hands			
	cook food			
	treat water			
Touching	wash, gloves			
Sharing (intimately)	monogamy			

But, germs are sneaky!

Build "Natural" Immunity

Lifestyle

good nutrition regular, adequate sleep enough regular exercise Memory body remembers first infection > prevent future infections/illnesses by same germ

Passive Immunization We accept antibodies ("anti-germs") to prevent and/or treat infection.

Examples:

general antibodies (immunoglobulin) hepatitis A measles

We accept antibodies ("anti-germs") to prevent and/or treat infection.

Examples:

general antibodies (immunoglobulin)

germ-specific antibodies

hepatitis B

rabies

Brucella

RSV

Passive Immunization

We accept antibodies ("anti-germs") to prevent and/or treat infection.

Examples:

general antibodies (immunoglobulin) germ-specific antibodies monoclonal antibodies Ebola COVID-19

Active Immunization

We accept dead or inactive germs or pieces of germs that prompt us to make our own antibodies.

Examples:

chicken pox whooping cough influenza typhoid fever

"Doubly Active" Immunization

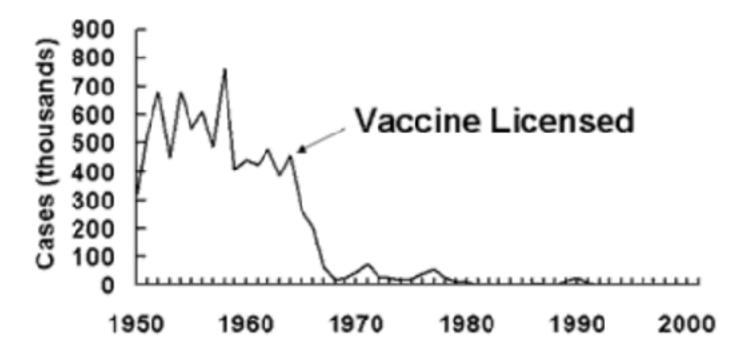
We accept cellular messenger that tells us to make a specific germ protein, then we make it, and that prompts us to then make antibodies against that protein.

Examples:

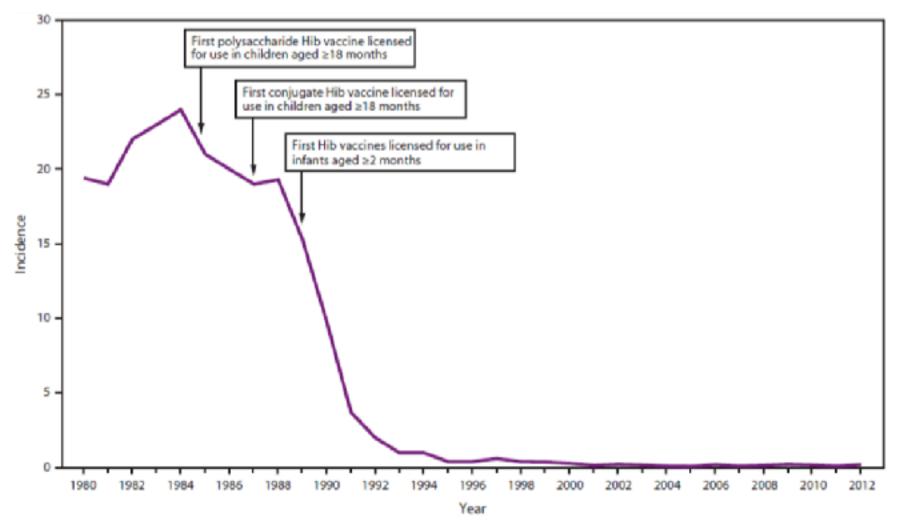
via mRNA – some COVID vaccines via vector – COVID and Ebola vaccines

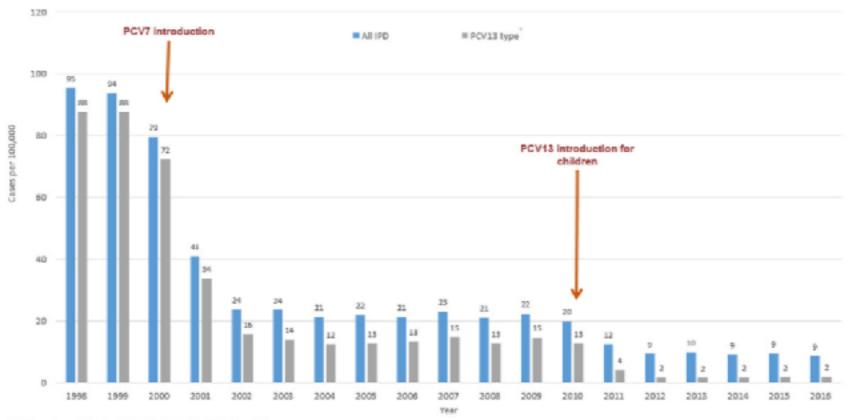
What to Do?

See vaccination as a health issue.


Understand that vaccines help.

Understand That Vaccines Help


Measles–United States, 1950-2001


Understand That Vaccines Help

Understand That Vaccines Help

Trends in invasive pneumococcal disease among children aged <5 years old, 1998-2016

^{&#}x27;PCV13 serotype: 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F

What to Do?

See vaccination as a health issue.

Understand that vaccines help.

Realize vaccine needs vary:

geographically (examples yellow fever, JEV) with age (example *Haemophilus influenza*) with medical situation (example TB) Acknowledge that vaccines aren't perfect.

Realize That Vaccines Aren't Perfect Protection rates vary

influenza	~ 50-70%
typhoid	~ 70%
measles	~ 99%
hepatitis A	~ 100%
COVID-19	~ 90%
Side effect rates vary	
injectable, pain	~100%
tetanus, sore	~10%
yellow fever	death in ~ 1 of 70,000

with US recommendations (CDC, WHO) www.cdc.gov/vaccines/schedules/index.html

(Part of) CDC Vaccine Schedule

Birth to 15 Months

Vaccine	Birth	1 mo	2 mos	4 mos	6 mos	9 mos	12 mos	15 mos
<u>Hepatitis B</u> (HepB)	1⊄ dose	⊢2 nd	dose→		←3 rd dose→			
Rotavirus () (RV) RV1 (2-dose series); RV5 (3-dose series)			1 st dose	2 nd dose	See notes			
Diphtheria, tetanus, & acellular pertussis () (DTaP: <7 yrs)			1 st dose	2 nd dose	3 rd dose			–4 th dose→
<u>Haemophilus influenzae type b</u> () (Hib)			1 st dose	2 ^{nc} dose	See <u>notes</u>			or 4 th dose, <u>notes</u> ⊶
Pneumococcal conjugate () (PCV13)			1 ^{કા} dose	2 nd dose	3 rd dose		-4 ⁰	^h dose –
Inactivated pollovirus () (IPV: <18 yrs)			1 st dose	2 nd dose	⇔3 rd dose→			

WHO Childhood Vaccine Schedule

Table 1: Summar Antigen			Children	Adolescents	Adults	Considerations	
Recommendation	s for all immur		e Table 2 for details) rogrammes			(see footnotes for details)	
BCG'		1 dose				Birth does and HIV; Universal vs selective vaccination; Co-administration; Vaccination of older age groups Pregnancy	
Nepatitis 6 ³		3-4-cluses (see footnote for schedule options)		3 doses (for high-risk groups if not previously immunized) (see footnote)		Firth dose Prenature and low both weight Co-administration and combination vaccine Dathition high risk	
Palia ³		3-4 doses (at least one dose of JPV) with DTPCV				bOPV birth dose Type of vectore Transmission and importation risk criteria	
DTP-containing vaccine (DTPCV) ⁴		3 doses	2 boosters 12 23 months (DTPCV) and 4-7 years (1d/01) containing vaccine, see footnote)	1 booster 9-15 yrs (1d)		Delayed/interrupted schedule Combination vacuine Matemail immunization	
Haemophilus Influenzae type b ^s	Option 1 Option 2	2 ar 3 d	3 doses, with OTPOV loses, with booster at least 6 months after last dose			Single dose if > 12 months of age Not recommended for children > 5 yrs old Delayed/interrupted schedule Coladministration and combination vectine	
Pneumococcal (Conjugate) ⁶	Option 1	3 prima	ry doses (3p+0) with DTPCV			Schedule options (3p+0 vs 2p+1) Vaccine options	
	Option 2		ry doses plus booster dose at $\cos \alpha f$ age $(2p+1)$ with DTPCV			HEV+ and preterm neonate booster	
Rotavirus ⁷		us ⁷ 2-3 doses depending on product with DTPCV				Vaccine options Not recommended if > 24 months old	
MensiesV		a¥ Z closes				Combination vaccine; HIV early wetchnolion; Pregnancy	
Rubella ^y		1 dose (see footnote)		Lidese (adolescent girls and women of child bearing age if not previously vaccinated; see footnote)		Achieve and sustain 80% coverage Combination vaccine and Co-administration Fregnancy	
HPV ¹⁰				2 doses (females)		larget 9-14 year old girls; Multi-age ophort vaccination; Pregnancy Ulder age groups > 15 years 3 doses HEV and immunecompromised	

with US recommendations (CDC, WHO) www.cdc.gov/vaccines/schedules/index.html

with travel-related recommendations www.istm.org/AF_CstmClinicDirectory.asp

with travel-related recommendations

ഹ

Ô

https://www.istm.org/AF_CstmClinicDirectory.asp

Home Login Join About Activities Resources	
--	--

Home

Online Clinic Directory

Practically... Stay up-to-date!

with US recommendations (CDC, AAP)

with travel-related recommendations

with shots

A Few Recent Vaccine Updates

Malaria Vaccine (plus)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Seasonal Malaria Vaccination with or without Seasonal Malaria Chemoprevention

D. Chandramohan, I. Zongo, I. Sagara, M. Cairns, R.-S. Yerbanga, M. Diarra,
F. Nikièma, A. Tapily, F. Sompougdou, D. Issiaka, C. Zoungrana, K. Sanogo,
A. Haro, M. Kaya, A.-A. Sienou, S. Traore, A. Mahamar, I. Thera, K. Diarra,
A. Dolo, I. Kuepfer, P. Snell, P. Milligan, C. Ockenhouse, O. Ofori-Anyinam,
H. Tinto, A. Djimde, J.-B. Ouédraogo, A. Dicko, and B. Greenwood

September 2021

Impregnated Bednets for All Vaccine for Some Sulfadoxine-Pyrimethamine and Amodiaquine for Some

Variable	Person-yr at Risk	Events	Incidence (95% CI) no. of events/1000 person-yr at risk	Protective Efficacy, Vaccine Alone or Combination vs. Chemoprevention (95% CI)	Protective Efficacy, Combination vs. Vaccine Alone (95% CI)
Burkina Faso and Mali					
Chemoprevention alone	5449.9	1661	304.8 (290.5 to 319.8)	Reference	
Vaccine alone	5535.7	1540	278.2 (264.6 to 292.4)	7.9 (-1.0 to 16.0)	Reference
Combination	5508.0	624	113.3 (104.7 to 122.5)	62.8 (58.4 to 66.8)	59.6 (54.7 to 64.0)

CONCLUSIONS

Administration of RTS,S/AS01_E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials

COVID Vaccines

Whichever vaccine you can get is the "best" one.

Pay attention to ongoing research.

ORIGINAL ARTICLE

Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age

E.B. Walter, K.R. Talaat, C. Sabharwal, A. Gurtman, S. Lockhart, G.C. Paulsen,
E.D. Barnett, F.M. Muñoz, Y. Maldonado, B.A. Pahud, J.B. Domachowske,
E.A.F. Simões, U.N. Sarwar, N. Kitchin, L. Cunliffe, P. Rojo, E. Kuchar, M. Rämet,
I. Munjal, J.L. Perez, R.W. Frenck, Jr., E. Lagkadinou, K.A. Swanson, H. Ma, X. Xu,
K. Koury, S. Mather, T.J. Belanger, D. Cooper, Ö. Türeci, P.R. Dormitzer, U. Şahin,
K.U. Jansen, and W.C. Gruber, for the C4591007 Clinical Trial Group*

CONCLUSIONS

A Covid-19 vaccination regimen consisting of two $10-\mu g$ doses of BNT162b2 administered 21 days apart was found to be safe, immunogenic, and efficacious in children 5 to 11 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.)

Systematic review of the safety, immunogenicity, and effectiveness of COVID-19 vaccines in pregnant and lactating individuals and their infants

Winnie Fu⁻¹, Brintha Sivajohan², Elisabeth McClymont⁻¹⁴, Arianne Albert⁻⁵, Chelsea Elwood⁻¹, Gina Ogilvie⁻²⁻⁵⁻⁷, Deborah Money⁻³⁻⁵

Affiliations + expand PMID: 34735722 DOI: 10.1002/ijgo.14008

Systematic Review of 23 Studies

Conclusion: COVID-19 vaccination in pregnant and lactating individuals is immunogenic, does not cause significant vaccine-related adverse events or obstetrical and neonatal outcomes, and is effective in preventing COVID-19 disease.

Dengue Vaccines

Cell Host & Microbe

Review

Dengue Vaccines: The Promise and Pitfalls of Antibody-Mediated Protection

David R. Martinez,¹ Stefan W. Metz,² and Ralph S. Baric^{1,2,*} ¹Department of Epidemiology, The University of North Carolina at Chapel Hill, NC, USA ²Department of Microbiology and Immunology, The University of North Carolina School of Medicine, Chapel Hill, NC, USA ^{*}Correspondence: rbaric@email.unc.edu https://doi.org/10.1016/j.chom.2020.12.011

More progress still needed!

Questions & Discussion

fischer.phil@mayo.edu

Mayo Clinic Children's Center

